•     wap入口    旧版入口

李彦胜
2017-07-11 14:48:48  发布者:00031220  来源:  评论:0 点击:

李彦胜,工学博士,摄影测量系聘期制教师。主要研究方向包括:计算机视觉,视觉感知计算,深度学习;飞行器视觉导航与制导,遥感影像场景检索与分类,红外目标检测与识别
教育与工作经历
 
Lecturer   (Aug. 2015 – Present)
School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China

Ph.D.        (Sep. 2010 – Jun. 2015)
School of Automation, Huazhong University of Science and Technology, Wuhan, China
B.S.          (Sep. 2006 – Jun. 2010)
School of Mathmatics and Statistics, Shandong University, Weihai, China
 
研究兴趣

理论研究:计算机视觉,视觉感知计算,深度学习等大数据机器学习技术;应用研究:飞行器视觉导航与制导,单/跨模态遥感影像场景检索,红外目标检测、识别与跟踪。

主持的科研项目

[1] 国家自然科学基金青年资助项目,41601352,基于快速样本标记和容错性深度学习的遥感影像场景分类,2017/01-2019/12,在研,项目负责人。
[2] 中国博士后科学基金特别资助项目,2017T100581,基于容错性深度哈希学习的单模态及跨模态遥感影像检索,2017/01-2018/12,在研,项目负责人。
[3] 中国博士后科学基金面上资助项目,2016M590716,基于容错性深度学习的高分辨率遥感影像场景分类技术,2016/01-2017/12,在研,项目负责人。
[4] 中央高校基本科研业务费,2042016KF0054,基于高层语义特征学习的高分辨率遥感影像居民区精确检测技术,2016/01-2017/12,在研,项目负责人。

学术研究成果
 
SCI Journal Publications:
2017.01-2017.12                                                                               
[19] Y. Li, X. Huang, and H. Liu. Unsupervised deep feature learning for urban village detection from high-resolution remote sensing images. Photogrammetric Engineering & Remote Sensing, 2017.
[18] J. Ma, J. Jiang, C. Liu, and Y. Li. Feature guided gaussian mixture model with semi-supervised EM and local geometric constraint for retinal image registration. Information Sciences, 2017.
[17] H. Dou, D. Ming, Z. Yang, Y. Li, and J. Tian. Object-based visual saliency via Laplacian regularized kernel regression. IEEE Transactions on Multimedia, 2017.
[16] L. Deng, H. Zhu, Q. Zhou, and Y. Li. Adaptive top-hat filter based on quantum genetic algorithm for infrared small target detection. Multimedia Tools and Applications, 2017.

2016.01-2016.12                                                                               
[15] Y. Li, Y. Zhang, J. Yu, Y. Tan, J. Tian, and J. Ma. A novel spatio-temporal saliency approach for robust DIM moving target detection from airborne infrared image sequences. Information Sciences, 2016, 369: 548-563.
[14] Y. Li, Y. Zhang, C. Tao, and H. Zhu. Content-based high-resolution remote sensing image retrieval via unsupervised feature learning and collaborative affinity metric fusion. Remote Sensing, 2016, 8: 709-733.
[13] Y. Li, C. Tao, Y. Tan, K. Shang, and J. Tian. Unsupervised multilayer feature learning for satellite image scene classification. IEEE Geoscience and Remote Sensing Letters, 2016, 13(2): 157-161. (ESI Highly Cited Paper)
[12] Y. Tan, Y. Li, C. Chen, J. Yu, and J. Tian. Cauchy graph embedding based diffusion model for salient object detection. Journal of the Optical Society of America A, 2016, 33(5): 887-898.
[11] K. Shang, X. Sun, J. Tian, Y. Li, J. Ma. Infrared small target detection via multi-direction line reconstruction and information entropy-induced suppression. Infrared Physics & Technology, 2016, 76: 75-81.

2015.01-2015.12                                                                               
[10] Y. Li, Y. Tan, J. Yu, S. Qi, and J. Tian. Kernel regression in mixed feature space for spatio-temporal saliency detection. Computer Vision and Image Understanding, 2015, 135: 126-140.
[9] Y. Li, Y. Tan, J. Deng, Q. Wen, and J. Tian. Cauchy graph embedding optimization for built-up areas detection from high-resolution remote sensing images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(5): 2078-2096.
[8] Y. Li, Y. Tan, Y. Li, S. Qi, and J. Tian. Built-up areas detection from satellite images using multi-kernel, multi-field integration and multi-hypothesis voting. IEEE Geoscience and Remote Sensing Letters, 2015, 12(6): 1190-1194.
[7] Y. Tan, Q. Li, Y. Li *, and J. Tian. Aircraft detection in high-resolution SAR images based on a gradient textural saliency map. Sensors, 2015, 15: 23071-23094.
[6] C. Tao, H. Pan, Y. Li, Z. Zou. Unsupervised spectral-spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification. IEEE Geoscience and Remote Sensing Letters, 2015, 12(12): 2438-2442.
[5] H. Li, Y. Tan, Y. Li, and J. Tian. Image layering based small infrared target detection method. Electronics Letters, 2015, 50(1): 42-44.
[4] S. Qi, J. Ma, J. Lin, Y. Li, J. Tian. Unsupervised ship detection based on saliency and S-HOG descriptor from optical satellite images. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1451-1455.
[3] S. Qi, J. Yu, J. Ma, Y. Li, and J. Tian. Salient object detection via contrast information and object vision organization cues. Neurocomputing, 2015, 167: 390-405.

2013.01-2014.12                                                                               
[2] Y. Li, Y. Tan, H. Li, T. Li, and J. Tian. Biologically inspired multilevel approach for multiple moving targets detection from airborne forward-looking infrared sequences. Journal of the Optical Society of America A, 2014, 31(4): 734-744.
[1] T. Li, Xin Tian, C. Xiong, Y. Li, S. Zhang, and J. Tian. Subsource-based compression in remote sensing. Journal of Applied Remote Sensing, 2013, 7(1): 073555-073555.

International Conference Proceedings:
[5] Y. Li, Y. Tan, J. Tian. Urban building extraction via visual graphical topic model. International Geoscience and Remote Sensing Syposium, 2014.
[4] Y. Li, Y. Tan, H. Li, T. Li, J. Tian. An E-Centrist descriptor based on contour enhancement for pedestrian recognition in video-surveillance. Proc SPIE, 2013.  
[3] Y. Tan, D. Wu, Y. Li, Q. Li, J. Tian. Adaptive aircraft detection in high-resolution SAR images. Proc SPIE, 2013.
[2] T. Li, X. Tian, C. Xiong, Y. Li, Y. Zhang, J. Tian. Lossless grey image compression using a splitting binary tree. Proc SPIE, 2013.
[1] H. Li, Y. Tan, Y. Li, B. Li, J. Tian. Small target detection based on non-linear histogram equalization and confidence measure. Proc SPIE, 2013.
   
Patents:
[1] Y. Li, and et al. A real-time approach for cloud detection from optical high-resolution satellite images. China Patent Application No.: ZL201510355499.2

联系方式

E-mail: yansheng.li@whu.edu.cn; liyansheng99@gmail.com

招生需求

欢迎具有扎实的数学基础与编程能力的理工科学生报考,优先招收有上进心、有创新意识的学生。请有意向加入我们的学生,先将简历发送到邮箱,我会尽快处理你们的申请。

上一篇:石书祝
下一篇:蒋子龙

分享到: 收藏
频道浏览本月排行